コンクリート構造物乾式切断

■ 従来工法と問題点

従来、<u>ワイヤーソー切断工法の主流は「湿式」及び「引き切り」</u>であり、現在でもワイヤーソーによる ほとんどの切断工事は、この工法で行われている。

《従来工法 の問題点》

- ① ワイヤー速度が異常に速く、危険を伴う
 - ⇒ 秒速20m/s以上のワイヤー速度は「切削」ではなく、切削と研磨を理解していない
- ② 切断効率(時間当たりの切断面積)が、データ化できない ⇒ 工期短縮、スケジュール管理が困難である為、利便性が低い
- ③ 引き切りの為、切断の時に必ずワイヤーを切削物に巻き付ける必要がある⇒ 稼働率の低下(=作業の無駄)及び、作業の危険性が高くなる(=作業者の危険区域への進入)
- ④ 湿式の場合、切削効率向上の為に水を使用する。(誤った認識) ⇒ 汚水発生、及び汚水処理の為に、切断工事の場所が限定される


■ 従来工法の問題点の解消法 - 乾式必要条件

- ① ワイヤー速度を下げる
 - ⇒ ワイヤーの持つ運動エネルギーは、速度の二乗に比例するので、速度を下げると、 飛躍的に安全性が増加する
- ② 切断効率を上げる
 - ⇒ 数値による理論制御により、最高切断効率を引き出す (勘による仕事の排除)
- ③ 押切切断により、切換作業、ワイヤー巻き付け作業、ワイヤー接合作業等の無駄及び危険 作業を徹底的に排除する
 - ⇒ MVE, IE分析による無駄の排除
- ④ 乾式切断により、使用区域が限定されないようになる
 - ⇒ 集塵方式の改善

■ 新工法による大型コンクリート構造物の切断工事例

- ▶ 下記図面に示す大型コンクリート構造物(配筋率0.7%程度)を、乾式押切工法にて切断。(世界初)
- ▶ お客様のご要望により、写真及び構造物詳細の提示は控えさせていただいております。

《工事概要》

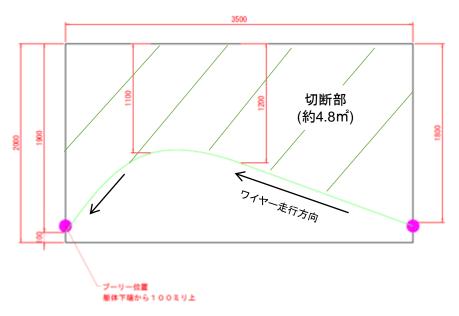
切断物の一部概要

▶ 上記のような切断を合計8回実施 (合計 約50㎡切断) 1回あたり切断面積S: 6.0m2 (60000cm2) (ハッチング部)

①H-300x300x10x15:118.4cm2 ②せん断補強筋D32x38本:301.79cm2 (公称断面積:7.942cm2/本)

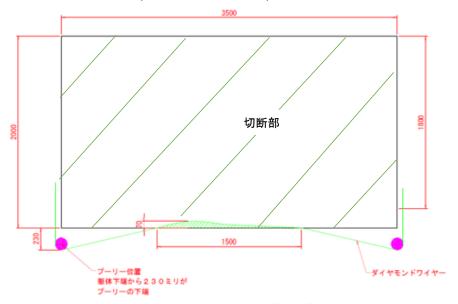
 $(118.4+301.7) \div 60000 = 0.700\%$

(H鋼および鉄筋サイズ、本数はいずれも 推定になります)


《切断の制約条件》

- ① 作業性の関係で、通常工法の引き切り切断不可(ワイヤーを切断物に巻き付けて切断不可) ⇒ 切断物裏面への作業員進入が不可である為
- ② 作業区域での汚水発生の禁止 ⇒ 周囲環境が汚染禁止である為
- ③ 大断面の高能率切断による工期短縮 ⇒ 全体工事のスケジュール短縮の為

《切断仕様》


切断方法	乾式押切切断
切断装置	HILTI DSW 3018-E
切断ワイヤー	ダイアテック社製 Mir型ワイヤー

① 切断開始後1時間 (切断効率: 4.8 m³/h)

- ▶ プーリー位置が下部にセットされているので、切断開始時の切断効率は高い(=4.8㎡/h)
- ⇒ 切断面に配筋ではなく、H鋼が入っているが、通常配筋と同様の状況で切断されている ⇒本来であれば、H形鋼より右側の切断線はもっと上がる
- ▶ ワイヤー送り速度は、最高8m/sであり、切断時の騒音が低く、安全性が高い

② 切断開始後2時間15分後 (切断効率: 1.76㎡/h)

▶ ワイヤー角度が小さくなり、切断効率が下がっているが、プーリー位置を上記図面位置よりも下方に30cm下げれば、切断効率は、飛躍的に向上する。

⇒しかし、本工事では構造物下面と水面の距離が短い為、これ以上プーリーを下げられない

■ 結果

これまで行ってきた金属切断の実績と合わせ、ワイヤーソーによる新しい工法の確立ができた。

1	平均切断効率	2.8m³/h (プーリー位置により、効率は変化する)⇒ 従来工法よりも切断効率は高い
2	ワイヤー送り速度	8m/sの超低速切断を達成 (安全性の飛躍的な向上) ⇒ 装置の小型化が可能になった
3	ワイヤーソーの切断余裕度	装置能力の75%能力で切断 (余裕あり)
4	切断面の平滑性	平坦で切断物を容易に引き抜ける (厚壁の開口に最適) *弊社工法では、走行中のワイヤーの蛇行が最小になり、カッター 切断と同様の面精度切断が可能になる。(実績多数)
⑤	押切のメリット	ワイヤーを被切削物に巻付ける作業がないので、自動切断が可能

■ 今後の工法開発

弊社は、本ダイヤモンドワイヤーソー工法をさらに向上させる為、以下の工法開発を行なっている。

1	コアドリル削孔技術	・コンクリート、金属の大口径削孔(乾式を含む) ⇒この技術との複合で、より大きな構造物の効率的な解体切断が可能 (例) 大型金属ヴェッセル、大型鋼製煙突、配管等
2	半自動切断解体装置	・押切切断と自動コア削孔の併用による遠隔解体 ⇒ 現在、ヨーロッパ、米国等で開発が進んでいる原子炉設備の切断 解体をイメージ
3	水中自動切断工法	・放射能汚染有害構造物等の水中切断による減容化等への利用
4	高速道路、床板等の 乾式高速切断装置	・コアドリル削孔との組み合わせによる乾式切断が可能となる。 ・今回の切断事例を床板切断に置き換えると、 ⇒4.8㎡/h切断 = 0.35m厚床板、13.7m長/h切断となる。